Analysis of cerebellar function in Ube3a-deficient mice reveals novel genotype-specific behaviors.

نویسندگان

  • Detlef H Heck
  • Yu Zhao
  • Snigdha Roy
  • Mark S LeDoux
  • Lawrence T Reiter
چکیده

Angelman syndrome (AS) is a childhood-onset neurogenetic disorder characterized by functionally severe developmental delay with mental retardation, deficits in expressive language, ataxia, appendicular action tremors and unique behaviors such as inappropriate laughter and stimulus-sensitive hyperexcitibility. Most cases of AS are caused by mutations which disrupt expression of maternal UBE3A. Although some progress has been made in understanding hippocampal-related memory and learning aspects of the disorder using Ube3a deficient mice, the numerous motoric abnormalities associated with AS (ataxia, action tremor, dysarthria, dysphagia, sialorrhea and excessive chewing/mouthing behaviors) have not been fully explored with mouse models. Here we use a novel quantifiable analysis of fluid consumption and licking behavior along with a battery of motor tests to examine cerebellar and other motor system defects in Ube3a deficient mice. Mice with a maternally inherited Ube3a deficiency (Ube3a(m-/p+)) show defects in fluid consumption behavior which are different from Ube3a(m-/p-) mice. The rhythm of fluid licking and number of licks per visit were significantly different among the three groups (m-/p-, m-/p+, m+/p+) and indicate that not only was fluid consumption dependent on Ube3a expression in the cerebellum, but may also depend on low levels of Ube3a expression in other brain regions. Additional neurological testing revealed defects in both Ube3a(m-/p+) and Ube3a(m-/p-) mice in rope climbing, grip strength, gait and a raised-beam task. Long-term observation of fluid consumption behavior is the first phenotype reported that differentiates between mice with a maternal loss of function versus complete loss of Ube3a in the brain. The neuronal and molecular mechanisms underlying mouse fluid consumption defects specifically associated with maternally inherited Ube3a deficiency may reveal important new insights into the pathobiology of AS in humans.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology.

Loss of function of the maternally inherited allele for the UBE3A ubiquitin ligase gene causes Angelman syndrome (AS), which is characterized by severe neurological impairment and motor dysfunction. In addition, UBE3A lies within chromosome 15q11-q13 region, where maternal, but not paternal, duplications cause autism. The UBE3A gene product, E6-AP, has been shown to function both as an E3 ligas...

متن کامل

Decreased tonic inhibition in cerebellar granule cells causes motor dysfunction in a mouse model of Angelman syndrome.

Angelman syndrome is a neurodevelopmental disorder caused by loss of function of the UBE3A gene encoding a ubiquitin E3 ligase. Motor dysfunction is a characteristic feature of Angelman syndrome, but neither the mechanisms of action nor effective therapeutic strategies have yet been elucidated. We report that tonic inhibition is specifically decreased in cerebellar granule cells of Ube3a-defici...

متن کامل

Highly parallel SNP genotyping reveals high-resolution landscape of mono-allelic Ube3a expression associated with locus-wide antisense transcription

We investigated the allele- and strand-specific transcriptional landscape of a megabase-wide genomic region of mouse Ube3a (ubiquitin protein ligase E3A) by means of a highly parallel SNP genotyping platform. We have successfully identified maternal-specific expression of Ube3a and its antisense counterpart (Ube3a-ATS) in brain, but not in liver. Because of the use of inter-subspecies hybrid mi...

متن کامل

Altered Serotonin, Dopamine and Norepinepherine Levels in 15q Duplication and Angelman Syndrome Mouse Models

Childhood neurodevelopmental disorders like Angelman syndrome and autism may be the result of underlying defects in neuronal plasticity and ongoing problems with synaptic signaling. Some of these defects may be due to abnormal monoamine levels in different regions of the brain. Ube3a, a gene that causes Angelman syndrome (AS) when maternally deleted and is associated with autism when maternally...

متن کامل

Dissociation of locomotor and cerebellar deficits in a murine Angelman syndrome model.

Angelman syndrome (AS) is a severe neurological disorder that is associated with prominent movement and balance impairments that are widely considered to be due to defects of cerebellar origin. Here, using the cerebellar-specific vestibulo-ocular reflex (VOR) paradigm, we determined that cerebellar function is only mildly impaired in the Ube3am-/p+ mouse model of AS. VOR phase-reversal learning...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 17 14  شماره 

صفحات  -

تاریخ انتشار 2008